
Chapter 5 

Determinants 

5.1 The Properties of Determinants 

The determinant of a square matrix is a single number. That number contains an amazing 
amount of information about the matrix. It tells immediately whether the matrix is invert­
ible. The determinant is zero when the matrix has no inverse. When A is invertible, the 
determinant of A -1 is 1/ (det A). If det A = 2 then det A-I = !. In fact the determinant 
leads to a formula for every entry in A-I. 

This is one use for determinants-to find formulas for inverse matrices and pivots and 
solutions A-I b. For a large matrix we seldom use those formulas, because elimination is 
faster. For a 2 by 2 matrix with entries a, b, e, d, its determinant ad - be shows how A-I 
changes as A changes: 

A=[~ !] 1 1 [d -b] has inverse A- = db' a - e -e a 
(1) 

Multiply those matrices to get I. When the determinant is ad - be = 0, we are asked to 
divide by zero and we ~an 't-then A has no inverse. (The rows are parallel when a/ e = 
b / d. This gives ad = be and det A = 0). Dependent rows always lead to det A = O. 

The determinant is also connected to the pivots. For a 2 by 2 matrix the pivots are a 
and d - (e / a)b. The product of the pivots is the determinant: 

Product of pivots a( d - ~b) = ad - be which is detA. 

After a row exchange the pivots change to e and b - (a/e)d. Those new pivots multiply to 
give be - ad. The row exchange to [~ g] reversed the sign of the determinant. 
Looking ahead The determinant of an n by n matrix can be found in three ways: 

1 Multiply the n pivots (times 1 or -1) 
2 Add up n! terms (times 1 or -1) 
3 Combine n smaller determinants (times 1 or -1) 
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This is the pivot formula. 
This is the "big" formula. 
This is the cofactor formula. 
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You see that plus or minus signs-the decisions between 1 and -I-playa big part in 
determinants. That comes from the following rule for n by n matrices: 

The determinant changes sign when two rows (or two columns) are exchanged. 

The identity matrix has determinant + 1. Exchange two rows and det P = -1. Exchange 
two more rows and the new permutation has det P = + 1. Half of all permutations are 
even (det P = 1) and half are odd (det P = -1). Starting from ! , half of the P 's involve 
an even number of exchanges and half require an odd number. In the 2 by 2 case, ad has a 
plus sign and be has minus-coming from the row exchange: 

det [ ~ ~] = 1 and det [ ~ ~] = -1. 

The other essential rule is linearity-but a warning comes first. Linearity does not mean 
that det(A + B) = det A + det B. This is absolutely false. That kind of linearity is not even 
true when A = ! and B = I. The false rule would say that det(I + l) = I + 1 = 2. The 
true rule is det 2! = 2n. Determinants are multiplied by 2n (not just by 2) when matrices 
are multiplied by 2. 

We don't intend to define the determinant by its formulas. It is better to start with 
its properties-sign reversal and linearity. The properties are simple (Section 5.1). They 
prepare for the formulas (Section 5.2). Then come the applications, including these three: 

(1) Determinants give A-I and A-1b (this formula is called Cramer's Rule). 

(2) When the edges of a box are the rows of A, the volume is I det A I. 

(3) For n special numbers .A, called eigenvalues, the determinants of A - .AI is zero. 
This is a truly important application and it fills Chapter 6. 

The Properties of the Determinant 

Determinants have three basic properties (rules 1, 2, 3). By using those rules we can 
compute the determinant of any square matrix A. This number is written in two ways, 
det A and IA I. Notice: Brackets for the matrix, straight bars for its determinant. When A 
is a 2 by 2 matrix, the three properties lead to the answer we expect: 

The determinant of [a
e 

db] is 
a b 
e d = ad -be. 

The last rules are det(AB) = (detA)(detB) and detAT = detA. We will check all rules 
with the 2 by 2 formula, but do not forget: The rules apply to any n by n matrix. We will 
show how rules 4 - 10 always follow from 1 - 3. 

Rule 1 (the easiest) matches det! = 1 with the volume = 1 for a unit cube. 
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1 The determinant of the n by n identity matrix is 1. 

1 
1 0 = 1 
o 1 

and 
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=1. 

1 

2 The determinant changes sign when two rows are exchanged (sign reversal): 

Check: 
e d 
a b 

a b 
e d 

(both sides equal be - ad). 

Because of this rule, we can find det P for any permutation matrix. Just exchange rows 
of I until you reach P. Then det P = + 1 for an even number of row exchanges and 
det P = -1 for an odd number. 

The third rule has to make the big jump to the determinants of all matrices. 

3 The determinant is a linear function of each row separately (all other rows stay fixed). 
If the first row is multiplied by t, the determinant is multiplied by t. If first rows are added, 
determinants are added. This rule only applies when the other rows do not change! Notice 
howe and d stay the same: 

1":."\' '.,:- ,"~'i .\' ::. ~:::~'.\, ,:" ~<".' '-:. ,'." ,'"~I "- ~' , , " 

;···.my.lf~"lr!:rp~Sl:~~;~t\~.·.~~~~er:~:;.: .. i; . 
.',"-'.,", 

'::::.,;.;:~ ::J',,:'::;)~ ,\',:, ':: .\ ,. ,:': ": 

tb 
d 

b + b' 
.' . . e d 

,: -_~;.:. >:-,:.,':,:-.. _:~-':'~'\"_L'_" :,:, _ " '. 

In the first case, both sides are tad - t be. Then t factors out. In the second case, both sides 
are ad + a'd - be - b' e. These rules still apply when A is n by n, and the last n - 1 rows 
don't change. May we emphasize rule 3 with numbers: 

488 122 
o 1 1 =4 0 1 1 
00100 1 

488 
and 0 1 1 

001 

40008 8 
011+011 
00100 1 

By itself, rule 3 does not say what those determinants are (the first one is 4). 
Combining multiplication and addition, we get any linear combination in one row 

(the other rows must stay the same). Any row can be the one that changes, since rule 2 
for row exchanges can put it up into the first row and back again. 

This rule does not mean that det 21 = 2 det I. To obtain 21 we have to multiply both 
rows by 2, and the factor 2 comes out both times: 

2 0 _ 22 - 4 o 2 - - and t 0 2 
o t = t 

This is just like area and volume. Expand a rectangle by 2 and its area increases by 4. 
Expand an n-dimensional box by t and its volume increases by tn. The connection is no 
accident-we will see how determinants equal volumes. 
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Pay special attention to rules 1-3. They completely determine the number detA. We 
could stop here to find a formula for n by n determinants. (a little complicated) We prefer 
to go gradually, with other properties that follow directly from the first three. These extra 
rules 4 - 10 make determinants much easier to work with. 

4 If two rows of A are equal, then det A = O. 

Equal rows Check 2 by 2: 
a b 
a b = O. 

Rule 4 follows from rule 2. (Remember we must use the rules and not the 2 by 2 formula.) 
Exchange the two equal rows. The determinant D is supposed to change sign. But also D 
has to stay the same, because the matrix is not changed. The only number with - D = D 
is D = O-this must be the determinant. (Note: In Boolean algebra the reasoning fails, 
because -1 = 1. Then D is defined by rules 1,3,4.) 

A matrix with two equal rows has no inverse. Rule 4 makes det A = O. But matrices 
can be singular and determinants can be zero without having equal rows! Rule 5 will be 
the key. We can do row operations without changing det A. 

5 Subtracting a multiple of one row from another row leaves det A unchanged . 

.e times row 1 
from row 2 

Rule 3 (linearity) splits the left side into the right side plus another term -f,': ~ ,. 
This extra term is zero by rule 4. Therefore rule 5 is correct (not just 2 by 2). 

Conclusion The determinant is not changed by the usual elimination steps from A to U. 
Thus det A equals det U. If we can find determinants of triangular matrices U, we can 
find determinants of all matrices A. Every row exchange reverses the sign, so always 
det A = ± det U. Rule 5 has narrowed the problem to triangular matrices. 

6 A matrix with a row of zeros has det A = O. 

Row of zeros o 0 _ 0 
c d - and 

a b 
o 0 =0. 

For an easy proof, add some other row to the zero row. The determinant is not changed 
(rule 5). But the matrix now has two equal rows. So det A = 0 by rule 4. 

7 If A is triangular then det A = a11a22'" ann = product of diagonal entries. 

Triangular 
a b 
o d = ad and also 

a 0 
c d = ad. 

Suppose all diagonal entries of A are nonzero. Eliminate the off-diagonal entries by the 
usual steps. (If A is lower triangular, subtract mUltiples of each row from lower rows. If A 
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is upper triangular, subtract from higher rows.) By rule 5 the determinant is not changed­
and now the matrix is diagonal: 

o 

Diagonal matrix det 

o 

Factor al1 from the first row by rule 3. Then factor a22 from the second row. Eventually 
factor ann from the last row. The determinant is a 11 times a22 times··· times ann times 
det I. Then rule 1 (used at last!) is det I = 1. 

What if a diagonal entry au is zero? Then the triangular A is singular. Elimination 
produces a zero row. By rule 5 the determinant is unchanged, and by rule 6 a zero row 
means det A = O. Triangular matrices have easy determinants. 

8 If A is singular then det A = O. If A is invertible then det A -:f: O. 

Singular [ a
e 

db] is singular if and only if ad - be = O. 

Proof Elimination goes from A to U. If A is singular then U has a zero row. The rules 
give det A = det U = O. If A is invertible then U has the pivots along its diagonal. The 
product of nonzero pivots (using rule 7) gives a nonzero determinant: 

The pivots of a 2 by 2 matrix (if a =1= 0) are a and d - (be/a): 

The determinant is 
a b 
e d 

a b 
o d - (be/a) 

= ad -be. 

This is the first formula for the determinant. MATLAB uses it to find det A from the 
pivots. The sign in ± det u depends on whether the number of row exchanges is even 
or odd. In other words, + 1 or -1 is the determinant of the permutation matrix P that 
exchanges rows. With no row exchanges, the number zero is even and P = I and det A = 
det U = product of pivots. Always det L = 1, because L is triangular with 1 's on the 
diagonal. What we have is this: 

If P A = L U then det P det A = det L det U. 

Again, det P = ± 1 and det A = ± det U. Equation (3) is our first case of rule 9. 

9 The determinant of AB isdetA timesdetB: IABI = IAIIBI. 

Product rule 
a b p q 
cdr s 

ap + br aq + bs 
ep + dr cq + ds 

(3) 
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When the matrix B is A-I, this rule says that the determinant of A-I is 1/ det A: 

A times A-I :4A¥;~:i.:;I'~~, ',,' (det A) (det A -I) ", det I = 1. ' 
; '~:.;..:.\~<,.::':- .;:/.;' ". -- . _. 

This product rule is the most intricate so far. Even the 2 by 2 case needs some algebra: 

IAIIBI = (ad - bc)(ps - qr) = (ap + br)(cq + ds) - (aq + bs)(cp + dr) = IABI. 

For the n by n case, here is a snappy proof that I A B I = I A II B I. When I B I is not zero, 
consider the ratio D(A) = IABI/IBI. Check that this ratio has properties 1,2,3. Then 
D(A) has to be the determinant and we have IAI = IABI/IBI: good. 

Property 1 (Determinant of 1) If A = I then the ratio becomes I B I I I B I = 1. 

Property 2 (Sign reversal) When two rows of A are exchanged, so are the same two 
rows of AB. Therefore IABI changes sign and so does the ratio IABI/IBI. 

Property 3 (Linearity) When row 1 of A is multiplied by t, so is row 1 of A B. This 
multiplies IABI by t and mUltiplies the ratio by t-as desired. 
Add row 1 of A to row 1 of A'. Then row 1 of AB adds to row 1 of A'B. 
By rule 3, determinants add. After dividing by IB I, the ratios add-as desired. 

Conclusion This ratio IABI/IBI has the same three properties that define IAI. Therefore 
it equals I A I. This proves the product rule I A B I = I A II B I. The case I B I = 0 is separate 
and easy, because AB is singular when B is singular. Then IABI = IAIIBI is 0 = O. 

10 The transpose A T has the same determinant as A. 

Transpose 
a b a c 
c d - b d since both sides equal ad - bc. 

The equation IATI = IAI becomes 0 = 0 when A is singular (we know that AT is also 
singular). Otherwise A has the usual factorization PA = LV. Transposing both sides 
gives AT pT = V T LT. The proof of IAI = IATI comes by using rule 9 for products: 

Compare det P det A -;- det L det V with det AT det P T = det VT det LT. 

First, det L = det LT = 1 (both have l's on the diagonal). Second, det V = det V T (those 
triangular matrices have the same diagonal). Third, det P = det p T (permutations have 
p T P = I, so I p Til PI = 1 by rule 9; thus I P I and I p T I both equal 1 or both equal -1). 
So L, V, P have the same determinants as LT, VT, p T and this leaves detA = detAT. 

Important comment on columns Every rule for the rows can apply to the columns (just 
by transposing, since IAI = IAT!). The determinant changes sign when two columns are 
exchanged. A zero column or two equal columns will make the determinant zero. If a 
column is multiplied by t, so is the determinant. The determinant is a linear function of 
each column separately. 

It is time to stop. The list of properties is long enough. Next we find and use an explicit 
formula for the determinant. 
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• REVIEW OF THE KEY IDEAS • 

1. The determinant is defined by det I = 1, sign reversal, and linearity in each row. 

2. After elimination det A is ± (product of the pivots). 

3. The determinant is zero exactly when A is not invertible. 

4. Two remarkable properties are det A B = (det A)( det B) and det AT = det A. 

• WORKED EXAMPLES • 

5.1 A Apply these operations to A and find the determinants of M}, M2, M 3 , M4 : 

In M 1, mUltiplying each aij by (_I)i + j gives a checkerboard sign pattern. 
In M2, rows 1,2,3 of A are subtracted from rows 2, 3,1. 
In M 3 , rows 1,2,3 of A are added to rows 2,3,1. 

How are the determinants of M 1, M 2, M 3 related to the determinant of A? 

[

row 1 - row 3] 
row 2-row I 
row 3 -row 2 [

row 1 + row 3] 
row 2 + row 1 
row 3 + row 2 

Solution The three determinants are det A, 0, and 2 det A. Here are reasons: 

so detMl = (-I)(detA)(-I). 

M2 is singular because its rows add to the zero row. Its determinant is zero. 
M3 can be split into eight matrices by Rule 3 (linearity in each row seperately): 

row 1 + row 3 
row 2 + row 1 
row 3 + row 3 

row 1 row 3 row 1 row 3 
row 2 + row 2 + row 1 + ... + row 1 
row 3 row 3 row 3 row 2 

All but the first and last have repeated rows and zero determinant. The first is A and the 
last has two row exchanges. So det M 3 = det A + det A. (Try A = I.) 
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5.1 B Explain how to reach this determinant by row operations: 

[ 

I-a 

det ! 
1 

I-a 
1 

Solution Subtract row 3 from row 1 and then from row 2. This leaves 

[

-a 0 
det 0 -a 

1 1 

a ] a . 
I-a 
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(4) 

Now add column 1 to column 3, and also column 2 to column 3. This leaves a lower 
triangular matrix with -a, -a, 3 - a on the diagonal: det = (-a)(-a) (3 - a). 

The determinant is zero if a = 0 or a = 3. For a = 0 we have the all-ones matrix­
certainly singular. For a = 3, each row adds to zero - again singular. Those numbers 0 
and 3 are the eigenvalues of the all-ones matrix. This example is revealing and important, 
leading toward Chapter 6. 

Problem Set 5.1 

Questions 1-12 are about the rules for determinants. 

1 Ifa4 by 4 matrix has detA = !, finddet(2A) and det(-A) and det(A2) anddet(A- 1). 

2 If a 3 by 3 matrix has detA = -1, find det(!A) and det(-A) and det(A2) and 
det(A-l ). 

3 True or false, with a reason if true or a counterexample if false: 

(a) The determinant of I + A is I + det A. 

(b) The determinant of ABC is IAIIBIICI. 

(c) The determinant of 4A is 41AI. 

(d) The determinant ~f AB - BA is zero. Try an example with A = [~ ~]. 
4 Which row exchanges show that these "reverse identity matrices" hand 14 have 

Ihl = -1 but 1141 = +I? 

[
0 0 1] 

det 0 1 0 =-1 
1 0 0 

but 

000 1 

det
0010 

1 0100 =+. 
1 000 

5 For n = 5,6,7, count the row exchanges to permute the reverse identity 1n to the 
identity matrix In. Propose a rule for every size n and predict whether itOI has 
determinant + 1 or -1. 
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6 Show how Rule 6 (determinant = 0 if a row is all zero) comes from Rule 3. 

7 Find the determinants of rotations and reflections: 

Q = [c~se -sine] 
sme cose d [ 

I - 2 cos2 e -2 cos e sin e ] 
an Q = 

-2 cos e sin e 1 - 2 sin2 e . 

8 Prove that every orthogonal matrix (Q T Q = I) has determinant 1 or -1. 

(a) Use the product rule IABI = IAIIBI and the transpose rule IQI = IQTI· 

(b) Use only the product rule. If I det QI > 1 then det Qn = (det Q)n blows up. 
How do you know this can't happen to Q n? 

9 Do these matrices have determinant 0, 1,2, or 3? 

[
0 0 1] 

A = 1 0 0 
o 1 0 

c= [1 
1 
1 
1 

10 If the entries in every row of A add to zero, solve Ax = 0 to prove det A = O. If 
those entries add to one, show that det(A - 1) = O. Does this mean det A = I? 

11 Suppose that CD = -DC and find the flaw in this reasoning: Taking determinants 
gives ICIIDI = -IDIICI. Therefore ICI = 0 or IDI = O. One or both of the 
matrices must be singular. (That is not true.) 

12 The inverse of a 2 by 2 matrix seems to have determinant = 1: 

-1 1 [d -b] ad - be 
det A = det d b = d b = 1. a - e -e a a - e 

What is wrong with this calculation? What is the correct det A-I? 

Questions 13-27 use the rules to compute specific determinants. 

13 Reduce A to U and find det A = product of the pivots: 

[: 1 

~] A = [~ 
2 

~l A= 2 2 
2 3 

14 By applying row operations to produce an upper triangular U, compute 

1 2 3 0 2 -1 0 0 

det 
2 6 6 1 

and det 
-1 2 -1 0 

-1 0 0 3 0 -1 2 -1 
0 2 0 7 0 0 -1 2 
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15 Use row operations to simplify and compute these determinants: 

[

101 201 301] 
det 102 202 302 

103 203 303 
and 

[

It t2] 
det tit . 

t 2 t 1 

16 Find the determinants of a rank one matrix and a skew-symmetric matrix: 

and 
[ 

0 1 
K = -1 0 

-3 -4 
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17 A skew-symmetric matrix has KT = -K. Insert a, b, c for 1,3,4 in Question 16 
and show that JKJ = O. Write down a 4 by 4 example with JKJ = 1. 

18 Use row operations to show that the 3 by 3 "Vandermonde determinant" is 

det 1 b b2 = (b-a)(c-a)(c-b). 
[

1 a a
2

] 

1 c c2 

19 Find the determinants of U and U -1 and U 2 : 

[
1 4 6] 

U = 0 2 5 
003 

and 

20 Suppose you do two row operations at once, going from 

to [
a - Le b - Ld] 
e -la d -lb . 

Find the second determinant. Does it equal ad - be? 

21 Row exchange: Add ro,,", 1 of A to row 2, then subtract row 2 from row 1. Then add 
row 1 to row 2 and multiply row 1 by -1 to reach B. Which rules show 

detB = 
e d 
a b 

equals 
a b 

- detA = - cd? 

Those rules could replace Rule 2 in the definition of the determinant. 

22 From ad - bc, find the determinants of A and A-I and A - AI: 

A = [i ~ ] and A-I = ~ [_ i -~ ] and A - AI = [
2 ~ A 2 ~ A l 

Which two numbers A lead to det(A - AI) = O? Write down the matrix A - AI for 
each of those numbers A-it should not be invertible. 
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23 From A = [11] find A2 and A-I and A - AI and their determinants. Which two 
numbers A lead to det(A - AI) = 0 ? 

24 Elimination reduces A to V. Then A = LV: 

A=[~ 
3 4] [1 0 n [~ 

3 

-~] = LU. 8 7 - 2 1 2 
-3 5 -9 -1 4 0 -1 

Find the determinants of L, V, A, V-I L -I, and V-I L -I A. 

25 If the i, j entry of A is i times j, show that det A = O. (Exception when A = [1 ].) 

26 If the i, j entry of A is i + j, show that det A = O. (Exception when n = 1 or 2.) 

27 Compute the determinants of these matrices by row operations: 

A= [~ ~] 
0 a 0 0 

C = [: 

a 
0 0 b 0 

0 and B= and 
0 

0 0 0 e 
d 0 0 0 

28 True or false (give a reason if true or a 2 by 2 example if false): 

(a) If A is not invertible then AB is not invertible. 

(b) The determinant of A is always the product of its pivots. 

(c) The determinant of A - B equals det A - det B. 

(d) AB and BA have the same determinant. 

29 What is wrong with this proof that projection matrices have det P = I? 

P = A(A
T 

A)-I AT so IP I = IAIIAT~IAIIATI = 1. 

a 
b 
b 

30 (Calculus question) Show that the partial derivatives ofln(detA) give A-I! 

~l 

j(a, b, e, d) = In(ad - be) leads to [aj/aa aj/ae] - A-I 
aj/ab aj/ad - . 

31 (MATLAB) The Hilbert matrix hilb(n) has i, j entry equal to 1/0 + j - 1). Print 
the determinants of hilb(1), hilb(2), ... , hilb(10). Hilbert matrices are hard to work 
with! What are the pivots of hilb (5)? 

32 (MATLAB) What is a typical determinant (experimentally) of rand(n) and randn(n) 
for n = 50, 100,200, 400? (And what does "Inf" mean in MATLAB?) 

33 (MATLAB) Find the largest determinant of a 6 by 6 matrix of 1 's and -1 'so 

34 If you know that det A = 6, what is the determinant of B? 

row 1 row 3 + row 2 + row 1 
From det A = row 2 = 6 find det B = row 2 + row 1 

row 3 row 1 
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5.2 Permutations and Cofactors 

A computer finds the determinant from the pivots. This section explains two other ways 
to do it. There is a "big formula" using all n! permutations. There is a "cofactor formula" 
using determinants of size n - 1. The best example is my favorite 4 by 4 matrix: 

2 -1 0 0 

A= 
-1 2 -1 0 

has detA = 5. 
0 -1 2 -1 
0 0 -1 2 

We can find this determinant in all three ways: pivots, big formula, cofactors. 

1. The product of the pivots is 2· ~ • ~ . ~. Cancellation produces 5. 

2. The "big formula" in equation (8) has 4! = 24 terms. Only five terms are nonzero: 

det A = 16 - 4 - 4 - 4 + 1 = 5. 

The 16 comes from 2 • 2 • 2 • 2 on the diagonal of A. Where do -4 and + 1 come 
from? When you can find those five terms, you have understood formula (8). 

3. The numbers 2, -1,0,0 in the first row multiply their cofactors 4,3,2,1 from the 
other rows. That gives 2 ·4- 1 ·3 = 5. Those cofactors are 3 by 3 determinants. 
Cofactors use the rows and columns that are not used by the entry in the first row. 
Every term in a determinant uses each row and column once! 

The Pivot Formula 

Elimination leaves the pivots d 1, ... , dn on the diagonal of the upper triangular U. If no 
row exchanges are involved, multiply those pivots to find the determinant: 

detA = (detL)(detU) = (1)(d1d2 ···dn ). (1) 

This formula for det A appeared in the previous section, with the further possibility of row 
exchanges. The permutation matrix in P A = L U has determinant -lor + 1. This factor 
det P = ± 1 enters the determinant of A: 

When A has fewer than n pivots, det A = 0 by Rule 8. The matrix is singular. 

Example 1 A row exchange produces pivots 4, 2, 1 and that important minus sign: 

A = [~ ~ n PA = [~ ~ n detA = -(4)(2)(1) = -8. 

The odd number of row exchanges (namely one exchange) means that det P = -1. 
The next example has no row exchanges. It may be the first matrix we factored into 

L U (when it was 3 by 3). What is remarkable is that we can go directly to n by n. Pivots 
give the determinant. We will also see how determinants give the pivots. 
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Example 2 The first pivots of this tridiagonal matrix A are 2, ~, 1. The next are ~ and 
~ and eventually n~1 • Factoring this n by n matrix reveals its determinant: 

2 -1 1 
1 1 -2" 

2 
-"3 

-1 2-1 
-1 2 

. -1 
-1 2 

1 

n-l 
n 1 

2 -1 
3 
'2 -1 

4 
"3 -1 

n+l 
n 

The pivots are on the diagonal of U (the last matrix). When 2 and ~ and 1 and ~ are 
multiplied, the fractions cancel. The determinant of the 4 by 4 matrix is 5. The 3 by 3 
determinant is 4. The n by n determinant is n + 1: 

-1,2, -1 matrix detA = (2) G) (1) ... (n!l) = n + 1. 

Important point: The first pivots depend only on the upper left corner of the original 
matrix A. This is a rule for all matrices without row exchanges. 

The first k pivots come from the k by k matrix Ak in the top left comer of A. 
The determinant of that corner submatrix Ak is d 1 d2 ••• dk. 

The 1 by 1 matrix A 1 contains the very first pivot d 1. This is det AI. The 2 by 2 matrix in 
the comer has det A2 = d 1 d2 . Eventually the n by n determinant uses the product of all n 
pivots to give det An which is det A. 

Elimination deals with the comer matrix Ak while starting on the whole matrix. We 
assume no row exchanges-then A = L U and Ak = LkUk. Dividing one determinant 
by the previous determinant (detAk divided by detAk-l) cancels everything but the latest 
pivot dk. This gives a ratio of determinants formula for the pivots: 

In the -1, 2, -1 matrices this ratio correctly gives the pivots f' ~, 1, ... , n~ 1 . The Hilbert 
matrices in Problem 5.1.31 also build from the upper left comer. 

We don't need row exchanges when all these corner submatrices have detAk =1= o. 

The Big Formula for Determinants 

Pivots are good for computing. They concentrate a lot of information---enough to find the 
determinant. But it is hard to connect them to the original aij. That part will be clearer if 
we go back to rules 1-2-3, linearity and sign reversal and det 1 = 1. We want to derive a 
single explicit formula for the determinant, directly from the entries aU' 

The formula has n! terms. Its size grows fast because n! = 1, 2, 6, 24, 120, .... For 
n = 11 there are about forty million terms. For n = 2, the two terms are ad and be. Half 
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the tenns have minus signs (as in -be). The other half have plus signs (as in ad). For 
n = 3 there are 3! = (3)(2)(1) tenns. Here are those six tenns: 

411,412 
a~f·.···.· aiZ2 
-4$1\4~2 

(4) 

Notice the pattern. Each product like alla23a32 has one entry from each row. It also has 
one entry from each column. The column order 1, 3, 2 means that this particular tenn 
comes with a minus sign. The column order 3, 1,2 in a13a21a32 has a plus sign. It will be 
"pennutations" that tell us the sign. 

The next step (n = 4) brings 4! = 24 tenns. There are 24 ways to choose one entry 
from each row and column. Down the main diagonal, alla22a33a44 with column order 
1,2,3,4 always has a plus sign. That is the "identity pennutation". 

To derive the big fonnula I start with n = 2. The goal is to reach ad -be in a systematic 
way. Break each row into two simpler rows: 

[a b]=[a 0]+[0 b] and [e d]=[e 0]+[0 d]' 

Now apply linearity, first in row 1 (with row 2 fixed) and then in row 2 (with row 1 fixed): 

a b a 
e d - e 

o + 0 b 
d e d 

(5) 

The last line has 22 = 4 detenninants. The first and fourth are zero because their rows are 
dependent-one row is a multiple of the other row. We are left with 2! = 2 detenninants 
to compute: 

aO Ob 10 01 
o d + e 0 = ad 0 1 + be 1 0 = ad - be. 

The splitting led to pennutation matrices. Their detenninants give a plus or minus sign. 
The 1 's are multiplied by numbers that come from A. The pennutation tells the column 
sequence, in this case (1,2) or (2,1). 

Now try n = 3. Each row splits into 3 simpler rows like [a 11 0 0]. Using linearity in 
each row, det A splits into 33 = 27 simple detenninants. If a column choice is repeated­
for example if we also choose [a21 0 0 ]-then the simple detenninant is zero. We pay 
attention only when the nonzero terms come from different columns. 

--'i([f!2i:\,q2~ 
q~):i' ... -

" -

a22 

a32 

a33 

a23 

al2 

+ 
a31 

.-'. - ~" ' - . 

al2 

+ a21 

a23 + a21 

a32 
. ... , 

" ": 

+ a22 

a33 a31 
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There are 3! = 6 ways to order the columns, so six determinants. The six permuta­
tions of (1,2,3) include the identity permutation (1,2,3) from P = I: 

Column numbers = (1,2,3), (2, 3,1), (3,1,2), (1, 3, 2), (2,1,3), (3, 2,1). (6) 

The last three are odd permutations (one exchange). The first three are even permutations 
(0 or 2 exchanges). When the column sequence is (a, (3, w), we have chosen the entries 
alaa2/3a3w-and the column sequence comes with a plus or minus sign. The determinant 
of A is now split into six simple terms. Factor out the aU: 

The first three (even) permutations have det P - +1, the last three (odd) permutations 
have det P = -1. We have proved the 3 by 3 formula in a systematic way. 

Now you can see the n by n formula. There are n! orderings of the columns. The 
columns (1,2, ... , n) go in each possible order (a, (3, ... , w). Taking ala from row 1 
and a2/3 from row 2 and eventually anw from row n, the determinant contains the product 
a laa2/3 ... anw times + 1 or -1. Half the column orderings have sign -1. 

The complete determinant of A is the sum of these n! simple determinants, times 1 
or -1. The simple determinants alaa2/3 ···anw choose one entry from every row and 
column: 

.' ··,.4~t}.i;i.·, .. , .. ~ijm.Qyef'all~r'¢;~~lj~P1~M\4t!~riS···P.{ •• ·(~.;fJ, '+;:~lrQ) 
,.... ~'" . 

:::\\:'\"tTt~:~ L(det P)alaa2/3 ... anw;:';:,~j~;F~~~~i 
.~J,<,;~'-.:,:.~\ ". .. '._',""_', " _. _.:' :',',,,::,;:~;.~ 

,,','.',\ .. 
'. 

The 2 by 2 case is +alla22 - a12a21 (which is ad - be). Here P is (1,2) or (2,1). 
The 3 by 3 case has three products "down to the right" (see Problem 28) and three 

products "down to the left". Warning: Many people believe they should follow this pattern 
in the 4 by 4 case. They only take 8 products-but we need 24. 

Example 3 (Determinant of U) When U is upper triangular, only one of the n! products 
can be nonzero. This one term comes from the diagonal: det U = +U 11 U22 ... Unn . All 
other column orderings pick at least one entry below the diagonal, where U has zeros. As 
soon as we pick a number like U21 = 0 from below the diagonal, that term in equation (8) 
is sure to be zero. 

Of course det I = 1. The only nonzero term is + (1) (1) ... (1) from the diagonal. 
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Example 4 Suppose Z is the identity matrix except for column 3. Then 

lOa 

determinant of Z = 
o 1 b 
o 0 c 
o 0 d 

o 
o 
o 
1 

= c. (9) 

The term (l)(l)(c)(l) comes from the main diagonal with a plus sign. There are 23 other 
products (choosing one factor from each row and column) but they are all zero. Reason: If 
we pick a, b, or d from column 3, that column is used up. Then the only available choice 
from row 3 is zero. 

Here is a different reason for the same answer. If c = 0, then Z has a row of zeros and 
det Z = c = 0 is correct. If c is not zero, use elimination. Subtract mUltiples of row 3 
from the other rows, to knock out a, b, d. That leaves a diagonal matrix and det Z = c. 

This example will soon be used for "Cramer's Rule". If we move a, b, c, d into the 
first column of Z, the determinant is det Z = a. (Why?) Changing one column of I leaves 
Z with an easy determinant, coming from its main diagonal only. 

Example 5 Suppose A has 1 's just above and below the main diagonal. Here n = 4: 

o 100 
101 0 
010 1 
001 0 

and 

o 100 
1 000 
000 1 
o 0 1 0 

have determinant 1. 

The only nonzero choice in the first row is column 2. The only nonzero choice in row 4 is 
column 3. Then rows 2 and 3 must choose columns 1 and 4. In other words P4 is the only 
permutation that picks out nonzeros in A4. The determinant of P4 is + 1 (two exchanges to 
reach 2, 1,4,3). Therefore det A4 = + 1. 

Determinant by Cofactors 

Formula (8) is a direct definitihn of the determinant. It gives you everything at once-but 
you have to digest it. Somehow this sum of n! terms must satisfy rules 1-2-3 (then all the 
other properties follow). The easiest is det I = 1, already checked. The rule of linearity 
becomes clear, if you separate out the factor a 11 or a 12 or a la that comes from the first 
row. For 3 by 3, separate the usual 6 terms of the determinant into 3 pairs: 

Those three quantities in parentheses are called "cofactors". They are 2 by 2 determinants, 
coming from matrices in rows 2 and 3. The first row contributes the factors all, a 12, a 13. 
The lower rows contribute the cofactors C 11, C 12, C 13. Certainly the determinant all C 11 + 
a12C12 + a13C13 depends linearly on all, a12, a 13-this is rule 3. 
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The cofactor of all is Cll = a22a33 - a23a32. You can see it in this splitting: 

all a12 a13 
a21 a22 a23 
a31 a32 a33 

all a12 al3 

a22 a23 + a21 a23 + a21 a22 
a32 a33 a31 a33 a31 a32 

We are still choosing one entry from each row and column. Since a 11 uses up row 1 and 
column 1, that leaves a 2 by 2 determinant as its cofactor. 

As always, we have to watch signs. The 2 by 2 determinant that goes with a 12 looks 
like a21a33 - a23a31. But in the cofactor C12 , its sign is reversed. Then a12C12 is the 
correct 3 by 3 determinant. The sign pattern for cofactors along the first row is plus-minus­
plus-minus. You cross out row 1 and column j to get a submatrix M 1j of size n - 1. 
Multiply its determinant by (-1) 1 + j to get the cofactor: 

The cofactors along row 1 are C 1j = (-1) 1 + j det M 1j . 

The cofactor expansion is detA = all C11 + a12C12 + ... + a1nCln. (11) 

In the big formula (8), the terms that multiply a 11 combine to give det Mil. The sign 
is (_1)1+1, meaning plus. Equation (11) is another form of equation (8) and also equa­
tion (10), with ~actors from row 1 multiplying cofactors that use the other rows. 

Note Whatever is possible for row 1 is possible for row i. The entries aU in that row also 
have cofactors Cij. Those are determinants of order n - 1, multiplied by (_I)i + j. Since 
aU accounts for row i and column j, the submatrix MU throws out row i and column j. 
The display shows a43 and M43 (with row 4 and column 3 removed). The sign (_1)4+3 
multiplies the determinant of M43 to give C43 . The sign matrix shows the ± pattern: 

• • 
A= • • 

• • 

• 
• 
• 

signs (-I)i+ j = 
+ + 

+ + 
+ + 

+ + 

A determinant of order n is a combination of determinants of order n - 1. A recursive 
person would keep going. Each subdeterminant breaks into determinants of order n - 2. 
We could define all determinants via equation (12). This rule goes from order n to n - 1 



5.2. Permutations and Cofactors 261 

to n - 2 and eventually to order 1. Define the 1 by 1 determinant la I to be the number a. 
Then the cofactor method is complete. 

We preferred to construct det A from its properties (linearity, sign reversal, det I = 1). 
The big formula (8) and the cofactor formulas (10)-(12) follow from those properties. 
One last formula comes from the rule that det A = det AT. We can expand in cofactors, 
down a column instead of across a row. Down column j the entries are a Ij to anj. The 
cofactors are C Ij to Cnj. The determinant is the dot product: 

Cofactors down column j : 

Cofactors are useful when matrices have many zeros-as in the next examples. 

Example 6 The -1, 2, -1 matrix has only two nonzeros in its first row. So only two 
cofactors Cll and C12 are involved in the determinant. I will highlight C12 : 

2 -1 
2 -I -1 -1 -1 2 -1 

=2 -I 2 -I - (-I) 2 -1 (14) 
-1 2 -1 

-1 2 
-1 2 -1 2 

You see 2 times Cll first on the right, from crossing out row 1 and column 1. This cofactor 
has exactly the same -1, 2, -1 pattern as the original A-but one size smaller. 

To compute the boldface C12 , use co/actors down its first column. The only nonzero 
is at the top. That contributes another -1 (so we are back to minus). Its cofactor is the 
-1,2, -1 determinant which is 2 by 2, two sizes smaller than the original A. 

Summary Each determinant Dn of order n comesfrom Dn- 1 and Dn- 2: 

D4 = 2D3 - D2 and generally :~:~i,,:,'~7j)/H;;£/i,~'~b~~,; (15) 

Direct calculation gives D2 = 3 and D3 = 4. Equation (14) has D4 = 2(4) - 3 = 5. 
These determinants 3, 4, 5 fit the formula Dn = n + 1. That "special tridiagonal answer" 
also came from the product of pivots in Example 2. 

The idea behind cofactors is to reduce the order one step at a time. The determinants 
Dn = n + 1 obey the recursion formula n + 1 = 2n - (n - 1). As they must. 

Example 7 This is the same matrix, except the first entry (upper left) is now 1: 

1 -1 

B4 = 
-1 2 -1 

-1 2 -1 
-1 2 

All pivots of this matrix tum out to be 1. So its determinant is 1. How does that come 
from cofactors? Expanding on row 1, the cofactors all agree with Example 6. Just change 
all = 2 to b 11 = 1: 

instead of 

The determinant of B4 is 4 - 3 = 1. The determinant of every Bn is n - (n - 1) = 1. 
Problem 13 asks you to use cofactors of the last row. You still find det Bn = 1. 
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• REVIEW OF THE KEY IDEAS • 

1. With no row exchanges, det A = (product of pivots). In the upper left comer, det Ak 
= (product of the first k pivots). 

2. Every term in the big formula (8) uses each row and column once. Half of the n! 
terms have plus signs (when det P = + 1) and half have minus signs. 

3. The cofactor Cu is (-I)i + j times the smaller determinant that omits row i and 
column j (because aU uses that row and column). 

4. The determinant is the dot product of any row of A with its row of cofactors. When 
a row of A has a lot of zeros, we only need a few cofactors. 

• WORKED EXAMPLES • 

5.2 A A Hessenberg matrix is a triangular matrix with one extra diagonal. Use cofactors 
of row 1 to show that the 4 by 4 determinant satisfies Fibonacci's rule 1 H 41 = 1 H 31 + 1 H 21. 
The same rule will continue for all sizes, IHnl = IHn-11 + IHn-21. Which Fibonacci 
number is IHn I? 

2 1 
1 2 1 
1 121 
1 112 

Solution The cofactor Cll for H4 is the determinant IH31. We also need C12 (in bold-
face): 

110 
C12 \ - 1 2 1 

1 1 2 

210 100 
121+121 
1 1 2 1 1 2 

Rows 2 and 3 stayed the same and we used linearity in row 1. The two determinants on the 
right are -I H 31 and + 1 H 21. Then the 4 by 4 determinant is 

The actual numbers are IH21 = 3 and IH31 = 5 (and of course IHI! = 2). Since IHn 1 
follows Fibonacci's rule IHn-11 + IHn- 21, it must be IHn 1 = Fn+2. 

5.2 B These questions use the ± signs (even and odd P's) in the big formula for det A: 

1. If A is the 10 by 10 all-ones matrix, how does the big formula give det A = O? 
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2. If you multiply all n! permutations together into a single P, is P odd or even? 

3. If you multiply each aij by the fraction i / j , why is det A unchanged? 

Solution In Question 1, with all aij = 1, all the products in the big formula (8) will 
be 1. Half of them come with a plus sign, and half with minus. So they cancel to leave 
det A = O. (Of course the all-ones matrix is singular.) 

In Question 2, mUltiplying [A ~] [A ~] gives an odd permutation. Also for 3 by 3, the 
three odd permutations multiply (in any order) to give odd. But for n > 3 the product of 
all permutations will be even. There are n! / 2 odd permutations and that is an even number 
as soon as it includes the factor 4. 

In Question 3, each aij is multiplied by i / j. So each product a laa2~ ... a nw in the 
big formula is multiplied by all the row numbers i = 1,2, ... , n and divided by all the 
column numbers j = 1,2, ... , n. (The columns come in some permuted order!) Then 
each product is unchanged and det A stays the same. 

Another approach to Question 3: We are multiplying the matrix A by the diagonal 
matrix D = diag(1 : n) when row i is multiplied by i. And we are postmultiplying by 
D-1 when column j is divided by j. The determinant of DAD-1 is the same as det A 
by the product rule. 

Problem Set 5.2 

Problems 1-10 use the big formula with n! terms: IA I = L ±alaa2p .•• anw • 

1 Compute the determinants of A, B, C from six terms. Are their rows independent? 

[
1 2 3] 

A = 3 1 2 
321 [

1 2 3] 
B = 4 4 4 

567 
C = [~ ~ ~]. 

1 0 0 
" 

2 Compute the determinants of A, B, C, D. Are their columns independent? 

A = 1 0 1 [
1 1 0] 

B = 4 5 6 [
1 2 3] 

o 1 1 789 

3 Show that det A = 0, regardless of the five nonzeros marked by x's: 

[
X x X] 

A= 0 0 x . 
o 0 x 

What are the cofactors of row I? 
What is the rank of A? 
What are the 6 terms in det A? 
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4 Find two ways to choose nonzeros from four different rows and columns: 

1 0 0 1 1 0 0 2 

A= 
0 1 1 1 

B= 
0 3 4 5 

(B has the same zeros as A). 
1 1 0 1 5 4 0 3 
1 0 0 1 2 0 0 1 

Is det A equal to 1 + 1 or 1 - 1 or -1 - I? What is det B? 

5 Place the smallest number of zeros in a 4 by 4 matrix that will guarantee det A = O. 
Place as many zeros as possible while still allowing det A =I O. 

6 (a) If all = a22 = a33 = 0, how many ofthe six terms in detA will be zero? 

(b) If all = a22 = a33 = a44 = 0, how many of the 24 products aIja2ka3Za4m 

are sure to be zero? 

7 How many 5 by 5 permutation matrices have det P = + I? Those are even permuta­
tions. Find one that needs four exchanges to reach the identity matrix. 

8 If det A is not zero, at least one of the n! terms in formula (8) is not zero. Deduce 
from the big formula that some ordering of the rows of A leaves no zeros on the 
diagonal. (Don't use P from elimination; that P A can have zeros on the diagonal.) 

9 Show that 4 is the largest determinant for a 3 by 3 matrix of 1 's and -1 's. 

10 How many permutations of (1,2,3,4) are even and what are they? Extra credit: 
What are all the possible 4 by 4 determinants of I + P even? 

Problems 11-22 use cofactors Cij = (_I)i+ j detMijo Remove row i and column j 0 

11 Find all cofactors and put them into cofactor matrices C, D. Find A C and det B. 

A=[~ ~] [
1 2 3] 

B= 4 5 6 . 
700 

12 Find the cofactor matrix C and mUltiply A times CT. Compare A CT with A-I: 

A-I = - 2 4 2 . 1 [3 2 1] 
4 1 2 3 

13 The n by n determinant Cn has l's above and below the main diagonal: 

0 1 0 
0 1 0 0 

0 1 1 0 I 0 
CI = 101 C2 = C3 = 1 0 1 C4 = 1 0 0 1 0 1 

0 1 0 
0 0 1 0 

Jason
高亮
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(a) What are these determinants C1 , C2 , C3 , C4 ? 

(b) By cofactors find the relation between Cn and Cn- 1 and Cn- 2. Find ClO. 

14 The matrices in Problem 13 have I 's just above and below the main diagonal. Going 
down the matrix, which order of columns (if any) gives all l's? Explain why that 
permutation is even for n = 4,8,12, ... and odd for n = 2,6,10, .... Then 

en = 0 (odd n) Cn = I (n = 4,8, ... ) Cn = -1 (n = 2,6, ... ). 

15 The tridiagonal I, I, I matrix of order n has determinant En: 

1 1 0 
1 1 0 0 

1 1 1 1 1 0 
E1 = III E2 = E3 = 1 1 1 E4 = 1 1 0 1 1 1 

0 1 1 
0 0 1 1 

(a) By cofactors show that En = En- 1 - En- 2. 

(b) Starting from E1 = 1 and E2 = 0 find E3 , E4, ... , Eg. 

(c) By noticing how these numbers eventually repeat, find EI00. 

16 Fn is the determinant of the 1, 1, -1 tridiagonal matrix of order n: 

1 -1 0 
1 -1 

1 -1 1 1 -1 
F2 = =2 F3 = 1 1 -1 =3 F4 = #4. 1 1 1 1 -1 

0 1 1 
1 1 

Expand in cofactors to show that Fn = Fn- 1 + Fn-2. These determinants are 
Fibonacci numbers 1,2,3,5,8, 13, .... The sequence usually starts 1,1,2,3 (with 
two 1 's) so our Fn is the,usual Fn+1. 

17 The matrix Bn is the -1,2, -1 matrix An except that b11 = 1 instead of all = 2. 
Using cofactors ofthe last row of B4 show that IB41 = 21B31-IB21 = 1. 

1 -1 

B4 = -1 2 -1 
-1 2 -1 

-1 2 
[ 

1 -1 ] 
B3 = -1 2-1 

-1 2 
[ 

1 -1] 
B2 = -1 2' 

The recursion I Bn I = 21 Bn- 1 1 - I Bn- 21 is satisfied when every I Bn I = 1. This 
recursion is the same as for the A's in Example 6. The difference is in the starting 
values 1, 1, 1 for the determinants of sizes n = 1, 2, 3. 

Jason
高亮
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18 Go back to Bn in Problem 17. It is the same as An except for bll = 1. So use 
linearity in the first row, where [I -1 0] equals [2 -I 0] minus [1 0 0]: 

I -1 0 2 -I 0 I 0 0 

IBnl = -1 -1 -1 
An- 1 An- 1 An- 1 

0 0 0 

Linearity gives IBnl = IAnl-IAn-ii = 
19 Explain why the 4 by 4 Vandermonde determinant contains x 3 but not X4 or x 5 : 

I 
1 

V4 = det 1 

The determinant is zero at x = , and . The cofactor of x 3 is 
V3 = (b-a)(c-a)(c-b). Then V4 = (b-a)(c-a)(c-b)(x-a)(x-b)(x-c). 

20 Find G2 and G3 and then by row operations G4 . Can you predict Gn ? 

o I 
I 0 

o I I 
I 0 1 
I I 0 

o I I I 
101 1 
1 1 0 1 
I I 1 0 

21 Compute S1, S2, S3 for these 1,3,1 matrices. By Fibonacci guess and check S4. 

3 1 
S2 = 1 3 

310 
S3 = I 3 I 

013 

22 Change 3 to 2 in the upper left comer of the matrices in Problem 21. Why does 
that subtract Sn-t from the determinant Sn? Show that the determinants of the new 
matrices become the Fibonacci numbers 2, S, 13 (always F2n+1). 

Problems 23-26 are about block matrices and block determinants. 

23 With 2 by 2 blocks in 4 by 4 matrices, you cannot always use block determinants: 

A B = IAIIDI o D 
but ~ ~ =1= IAIIDI-ICIIBI· 

(a) Why is the first statement true? Somehow B doesn't enter. 

(b) Show by example that equality fails (as shown) when Centers. 

(c) Show by example that the answer det(AD - CB) is also wrong. 

Jason
高亮
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24 With block multiplication, A = LV has Ak = LkVk in the top left comer: 

(a) Suppose the first three pivots of A are 2,3, -1. What are the determinants of 
L I , L 2 , L3 (with diagonal 1 '8) and VI, V2 , V3 and A}, A2 , A3? 

(b) If AI, A 2 , A3 have determinants 5,6,7 find the three pivots from equation (3). 

25 Block elimination subtracts CA- 1 times the first row [A B] from the second row 
[C D]. This leaves the Schur complement D - CA-1 B in the comer: 

[-C~-l ~][~ ~]=[~ D-gA-1B]. 

Take determinants of these block matrices to prove correct rules if A-I exists: 

A 
C ~ = IAIID - CA-l BI = lAD - CBI provided AC = CA. 

26 If A is m by nand B is n by m, block mUltiplication gives det M = det A B: 

[ ° A] [AB A] [ I 0] M = -B I = ° I -B I . 

If A is a single row and B is a single column what is det M? If A is a column and B 
is a row what is det M? Do a 3 by 3 example of each. 

27 (A calculus question) Show that the derivative of det A with respect to a 11 is the 
cofactor CII . The other entries are fixed-we are only changing all. 

Problems 28-33 are about the "big formula" with n! terms. 

28 A 3 by 3 determinant has three products "down to the right" and three "down to the 
left" with minus signs. Compute the six terms like (1)(5)(9) = 45 to find D. 

" 

+ + + 

Explain without detenninants 
why this particular matrix 
is or is not invertible. 

29 For £4 in Problem 15, five of the 4! = 24 terms in the big formula (8) are nonzero. 
Find those five terms to show that £4 = -1. 

30 For the 4 by 4 tridiagonal second difference matrix (entries -1, 2, -1) find the five 
terms in the big formula that give det A = 16 - 4 - 4 - 4 + 1. 
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31 Find the determinant of this cyclic P by cofactors of row 1 and then the "big for­
mula". How many exchanges reorder 4, 1,2,3 into 1,2,3,4? Is Ip 2 1 = lor-I? 

P= 

000 1 
100 0 
o 1 0 0 

p2 = 
001 0 
000 1 
1 000 
o 1 0 0 

= [~ ~ l 
o 0 1 0 

Challenge Problems 

32 Cofactors ofthe 1,3,1 matrices in Problem 21 give a recursion Sn = 3Sn-l - Sn-2. 
Amazingly that recursion produces every second Fibonacci number. Here is the chal­
lenge. 

Show that Sn is the Fibonacci number F2n+2 by proving F2n+2 = 3F2n - F2n- 2. 
Keep using Fibonacci's rule Fk = Fk-l + Fk-2 starting with k = 2n + 2. 

33 The symmetric Pascal matrices have determinant 1. If I subtract 1 from the n, n 
entry, why does the determinant become zero? (Use rule 3 or cofactors.) 

1 1 1 1 
1 2 3 4 

det 1 3 6 10 

1 4 10 20 

= 1 (known) 

1 1 

det 1 2 
1 3 
1 4 

1 1 
3 4 
6 10 
10 19 

= 0 (to explain). 

34 This problem shows in two ways that det A = 0 (the x's are any numbers): 

x x x x x 
x x x x x 

A= 0 0 0 x x 
0 0 0 x x 
0 0 0 x x 

(a) How do you know that the rows are linearly dependent? 

(b) Explain why all 120 terms are zero in the big formula for detA. 

35 If Idet(A)1 > 1, prove that the powers An cannot stay bounded. But if Idet(A) I < 1, 
show that some entries of An might still grow large. Eigenvalues will give the right 
test for stability, determinants tell us only one number. 
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5.3 Cramer's Rule, Inverses, and Volumes 

This section solves Ax = b-by algebra and not by elimination. We also invert A. In the 
entries of A-I, you will see det A in every denominator-we divide by it. (If det A = 0 
then we can't divide and A-I doesn't exist.) Each entry in A-I and A-1b is a determinant 
divided by the determinant of A. 

Cramer's Rule solves Ax = b. A neat idea gives the first component Xl. Replacing the 
first column of I by x gives a matrix with determinant Xl. When you multiply it by A, the 
first column becomes Ax which is b. The other columns are copied from A: 

Key idea [ A 

We multiplied a column at a time. Take determinants of the three matrices: 

detBI 
Product rule (detA)(xd = detBI or Xl = detA . 

This is the first component of x in Cramer's Rule! Changing a column of A gives BI. 
To find X2, put the vector x into the second column of the identity matrix: 

Same idea 

Take determinants to find (detA)(x2) = detB2. This gives X2 in Cramer's Rule: 

detBI 
X --­

I - detA 

.. ,' . 
\', , 

detB2 
X ---2 - detA 

Example 1 Solving 3XI + 4X2 = 2 and 5XI + 6X2 = 4 needs three determinants: 

3 4 
detA = 5 6 

2 4 
detB1 = 4 6 

3 2 
detB2 = 5 4 

Those determinants are -2 and -4 and 2. All ratios divide by det A: 

Cramer's Rule Xl = ~ = 2 X2 = _~ = -1 check [; : ] [ -i ] = [ ~ l 

(1) 

(2) 

(3) 

To solve an n by n system, Cramer's Rule evaluates n + I determinants (of A and the 
n different B's). When each one is the sum of n! terms-applying the "big formula" with 
all permutations-this makes a total of (n + I)! terms. It would be crazy to solve equations 
that way. But we do finally have an explicit formula for the solution x. 
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Example 2 Cramer's Rule is inefficient for numbers but it is well suited to letters. For 
n = 2, find the columns of A-I by solving AA-I = I: 

Columns of I 

Those share the same A. We need five determinants for Xl, X2, YI, Y2: 

a b 
c d 

1 b 
and 0 d 

a 1 
c 0 

o b 
1 d 

a 0 
c 1 

The last four are d, -c, -b, and a. (They are the cofactors!) Here is A-I : 

d -c -b a 1 [d 
Xl = JAT' X2 = JAT' YI = JAT' Y2 = JAT' and then A-I = ad - be -c 

I chose 2 by 2 so that the main points could come through clearly. The new idea is the 
appearance of the cofactors. When the right side is a column of the identity matrix I, the 
determinant of each matrix B j in Cramer's Rule is a cofactor. 

You can see those cofactors for n = 3. Solve AA-I = I (first column only): 

Determinants 
= Cofactors of A 

1 a12 al3 

o a22 a23 
o a32 a33 

all 1 al3 
a21 0 a23 
a31 0 a33 

all aI2 1 
a21 a22 0 
a31 a32 0 

(5) 

That first determinant I B 11 is the cofactor C 11. The second determinant I B21 is the cofactor 
CI2 . Notice that the correct minus sign appears in -(a2Ia33 - a23a3I). This cofactor C12 
goes into the 2,1 entry of A-I-the first column! So we transpose the cofactor matrix, and 
as always we divide by det A. 

The i, j entry of A -I is the cofactor C j i (not Cij) divided by det A: :, 

and 

The cofactors Cij go into the "cofactor matrix" C. Its transpose leads to A-I. To compute 
the i, j entry of A-I, cross out row j and column i of A. Multiply the determinant by 
(-l)i+j to get the cofactor, and divide by detA. 

Check this rule for the 3, 1 entry of A-I. This is in column 1 so we solve Ax = (1, 0, 0). 
The third component X3 needs the third determinant in equation (5), divided by det A. That 
third determinant is exactly the cofactor C l3 = a2Ia32-a22a3I. So (A-Ihl = C I3 / detA 
(2 by 2 determinant divided by 3 by 3). 
Summary In solving AA-I = I, the columns of I lead to the columns of A-I. Then 
Cramer's Rule using b = columns of I gives the short formula (6) for A-I. 
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Direct proof of the formula A-I = CTj det A The idea is to multiply A times C T : 

Row 1 of A times column 1 of the cofactors yields the first det A on the right: 

all C 11 + a 12 C 12 + a 13 C 13 = det A by the cofactor rule. 
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(7) 

Similarly row 2 of A times column 2 of CT(transpose) yields detA. The entries a2j are 
multiplying cofactors C2j as they should, to give the determinant. 

How to explain the zeros off the main diagonal in equation (7)? Rows of A are multi­
plying cofactors from different rows. Why is the answer zero? 

Row2of A 
Row 1 ofC 

(8) 

Answer: This is the cofactor rule for a new matrix, when the second row of A is copied into 
its first row. The new matrix A * has two equal rows, so det A * = 0 in equation (8). Notice 
that A * has the same cofactors Cll , C12 , CI3 as A-because all rows agree after the first 
row. Thus the remarkable multiplication (7) is correct: 

ACT = (det A)/ or A-I = C
T 

• 
detA 

Example 3 The "sum matrix" A has determinant 1. Then A-I contains cofactors: 

A= 

1 000 
1 1 0 0 
I 1 1 0 
1 1 1 1 

has inverse 
CT 

A-I = _ = 
1 

1 
-1 

0 
0 

0 
1 

-1 
0 

0 
0 
1 

-1 

o 
o 
o 
1 

Cross out row 1 and column l of A to see the 3 by 3 cofactor Cll = 1. Now cross out row 
1 and column 2 for CI2 • The 3 by 3 submatrix is still triangular with determinant 1. But 
the cofactor e12 is -1 because of the sign (-1) 1+2. This number -1 goes into the (2, 1) 
entry of A -1--<1on 't forget to transpose C. 

The inverse of a triangular matrix is triangular. Cofactors give a reason Why. 

Example 4 If all cofactors are nonzero, is A sure to be invertible? No way. 

Area of a Triangle 

Everybody knows the area of a rectangle-base times height. The area of a triangle is half 
the base times the height. But here is a question that those formulas don't answer. If we 
know the corners (xt, Yl) and (xz, yz) and (X3, Y3) of a triangle, what is the area? 
Using the comers to find the base and height is not a good way. 
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Figure 5.1: General triangle; special triangle from (0,0); general from three specials. 

Determinants are much better. The square roots in the base and height cancel out in the 
good formula. The area of a triangle is half of a 3 by 3 determinant. If one comer is at 
the origin, say (X3, Y3) = (0,0), the determinant is only 2 by 2. 

When you set x3 = Y3 = ° in the 3 by 3 determinant, you get the 2 by 2 determinant. These 
formulas have no square roots-they are reasonable to memorize. The 3 by 3 determinant 
breaks into a sum of three 2 by 2's, just as the third triangle in Figure 5.1 breaks into three 
special triangles from (0,0): 

Cofactors of 
column 3 

Xl YI 1 

Atea = ~ X2 Y2 1 
X3 Y3 1 

+~(XIY2 - X2Yl) 

+ ~ (X2Y3 - X3Y2) 

+~(X3Yl - XIY3). 

(9) 

If (0, 0) is outside the triangle, two of the special areas can be negative-but the sum is still 
correct. The real problem is to explain the special area ~(XIY2 - x2yd. 

Why is this the area of a triangle? We can remove the factor ~ and change to a paral­
lelogram (twice as big, because the parallelogram contains two equal triangles). We now 
prove that the parallelogram area is the determinant XIY2 - X2Yl. This area in Figure 5.2 
is 11, and therefore the triangle has area 1{. 

Proof that a parallelogram startingfrom (0,0) has area = 2 by 2 determinant. 
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Parallelogram 

Area = I ~ ; I = 11 

(0,0) (0,0) Triangle: Area = 121 

Figure 5.2: A triangle is half of a parallelogram. Area is half of a determinant. 

There are many proofs but this one fits with the book. We show that the area has the same 
properties 1-2-3 as the determinant. Then area = detelminant! Remember that those three 
rules defined the determinant and led to all its other properties. 

1 When A = I, the parallelogram becomes the unit square. Its area is det I = 1. 

2 When rows are exchanged, the determinant reverses sign. The absolute value (positive 
area) stays the same-it is the same parallelogram. 

3 If row 1 is multiplied by t, Figure 5.3a shows that the area is also multiplied by t. Sup­
pose a new row (x~, yD is added to (Xl, YI) (keeping row 2 fixed). Figure 5.3b shows 
that the solid parallelogram areas add to the dotted parallelogram area (because the two 
triangles completed by dotted lines are the same). 

(0,0) 

Full area = tA 
.... , 

I 

I 
I 

I 

...................... (txl' tyl) 
.... , 

Dotted area = Solid area = A + A 

(0,0) 

Figure 5.3: Areas obey the rule of linearity (keeping the side (X2' Y2) constant). 

That is an exotic proof, when we could use plane geometry. But the proof has a major 
attraction-it applies in n dimensions. The n edges going out from the origin are given by 
the rows of an n by n matrix. The box is completed by more edges, just like the parallelo­
gram. 

Figure 5.4 shows a three-dimensional box-whose edges are not at right angles. The 
volume equals the absolute value of det A. Our proof checks again that rules 1-3 for 
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determinants are also obeyed by volumes. When an edge is stretched by a factor t, the 
volume is multiplied by t. When edge 1 is added to edge 1', the new box has edge 1 + 
1'. Its volume is the sum of the two original volumes. This is Figure 5.3b lifted into 
three dimensions or n dimensions. I would draw the boxes but this paper is only two­
dimensionaL 

x 

z 

volume of box 
=Ideterminantl 

..k-----t'------y 

Figure 5.4: Three-dimensional box formed from the three rows of A. 

The unit cube has volume = 1, which is det I. Row exchanges or edge exchanges leave 
the same box and the same absolute volume. The determinant changes sign, to indicate 
whether the edges are a right-handed triple (detA > 0) or a left-handed triple (detA < 0). 
The box volume follows the rules for determinants, so volume of the box = absolute value 
of the determinant. 

Example 5 Suppose a rectangular box (900 angles) has side lengths r, s, and t. Its 
volume is r times s time,s t. The diagonal matrix with entries r, s, and t produces those 
three sides. Then det A also equals r st. 

Example 6 In calculus, the box is infinitesimally small! To integrate over a circle, we 
might change x and y to r and e. Those are polar coordinates: x = r cos e and y = r sin e. 
The area of a "polar box" is a determinant J times d r de: 

J _ ax/ar ax/ae 
- ay jar ay /ae 

cos e -r sin e 
sin e r cos e = r. 

This determinant is the r in the small area d A = r d r de. The stretching factor J goes 
into double integrals just as dx/du goes into an ordinary integral j dx = j(dx/du) duo 
For triple integrals the Jacobian matrix J with nine derivatives will be 3 by 3. 
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The Cross Product 

The cross product is an extra (and optional) application, special for three dimensions. Start 
with vectors u = (UI, U2, U3) and v = (VI, V2, V3). Unlike the dot product, which is a 
number, the cross product is a vector-also in three dimensions. It is written u x v and 
pronounced "u cross v." The components of this cross product are just 2 by 2 cofactors. 
We will explain the properties that make u x v useful in geometry and physics. 

This tim~ we bite the bullet, and write down the formula before the properties. 

:'DEFINITI;ON . Thecrt)~scJ1j.t)dJ#ctofij' :-. (1.lb~~,U3)'Md .1;.,' . .' (Vi ,V2,lh) is a. y~ct()r' 
,~ : 

" .-,'. ., .. ;,' . 

i j k' ." 
.-- --

. u x v ~ .. '. UI U 2 U 3 :,.. ..(U2'V~,~U3P:?;)i-h.~u~v{'--"U .. tt.!3)j+(UIV2"'-'~2Vl lk., (rO) 
VI V2 V3 ......... . 

Comment The 3 by 3 determinant is the easiest way to remember u x v. It is not especially 
legal, because the first row contains vectors i , j ,k and the other rows contain numbers. 
In the determinant, the vector i = (1,0,0) multiplies U2V3 and -U3V2. The result is 
(U2V3 - U3V2, 0, 0), which displays the first component of the cross product. 

Notice the cyclic pattern of the subscripts: 2 and 3 give component 1 of u x v, then 3 
and 1 give component 2, then 1 and 2 give component 3. This completes the definition of 
u x v. Now we list the properties of the cross product: 

Property 1 v x u reverses rows 2 and 3 in the determinant so it equals -(u x v). 

Property 2 The cross product u x v is perpendicular to u (and also to v). The direct proof 
is to watch terms cancel. Perpendicularity is a zero dot product: 

U· (u x v) = UI (U2V3 - U3V2) + U2(U3VI - Ul V3) + U3(Ul V2 - U2VI) = 0. (11) 

The determinant now has rows u, u and v so it is zero. 

Property 3 The cross product of any vector with itself (two equal rows) is u xu = O. 

When u and v are parallel, the cross product is zero. When u and v are perpendicular, the 
dot product is zero. One involves sin () and the other involves cos (): 

- ,"..." .- . 

'IlttX'l.7II\ ······JI:«]rll'1!llt$m)@l,:~Q ":III'~J""1l411I1pUldQ$eL '. (12) 
I_~-"- - " - -', ".. ' __ •. ,_._ - ~_ 

Example 7 Since u = (3,2,0) and v = (1,4,0) are in the xy plane, u x v goes up the 
z axis: 

i j 
uXV= 3 2 

1 4 

k ° = 10k. The cross product is u x v = (0,0,10). 

° 
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The length ofu x v equals the area of the parallelogram with sides u and v. This will be 
important: In this example the area is 10. 

Example 8 The cross product of u = (1,1,1) and v = (1,1,2) is (1, -1, 0): 

i 
1 
1 

j 
1 
1 

k 
1 

1 = i 1 
2 

I 1 
2 - j 1 

1 + k 1 
2 1 

1 
1 =i-j. 

This vector (1, -1 , 0) is perpendicular to (1, 1, 1) and (1, 1, 2) as predicted. Area = .Ji. 
Example 9 The cross product of (1, 0, 0) and (0, 1,0) obeys the right hand rule. It goes 
up not down: 

i xj =k 

i j k Rule u x v points along 
1 0 0 =k your right thumb when the 
0 1 0 

u =i v=j 
fingers curl from u to v. 

Thus i x j = k. The right hand rule also gives j x k = i and k xi = j. Note the cyclic 
order. In the opposite order (anti-cyclic) the thumb is reversed and the cross product goes 
the other way: k x j = -i and i x k = - j and j xi = -k. You see the three plus signs 
and three minus signs from a 3 by 3 determinant. 

The definition of u x v can be based on vectors instead of their components: 

This definition appeals to physicists, who hate to choose axes and coordinates. They see 
(UI, U2, U3) as the position of a mass and (Fx, Fy , Fz) as a force acting on it. If F is 
parallel to u, then u x F, = O-there is no turning. The cross product u x F is the turning 
force or torque. It points along the turning axis (perpendicular to u and F). Its length 
II u" "F" sin e measures the "moment" that produces turning. 

Triple Product = Determinant = Volume 

Since u x v is a vector, we can take its dot product with a third vector w. That produces 
the triple product (u x v) . w. It is called a "scalar" triple product, because it is a number. 
In fact it is a determinant-it gives the volume of the u, v, w box: 

WI W2 W3 UI U2 U3 

Triple product i:~it;"~F~~,~\(tI!,;,i - UI U2 U3 - VI V2 V3 (13) 

VI V2 V3 WI W2 W3 
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We can put w in the top or bottom row. The two determinants are the same because __ 
row exchanges go from one to the other. Notice when this determinant is zero: 

(u x v) • w = 0 exactly when the vectors u, v, w lie in the same plane. 

First reason u x v is perpendicular to that plane so its dot product with w is zero. 

Second reason Three vectors in a plane are dependent. The matrix is singular (det = 0). 

Third reason Zero volume when the u. v, w box is squashed onto a plane. 

It is remarkable that (u xv) . w equals the volume of the box with sides u, v, w. This 
3 by 3 determinant carries tremendous information. Like ad - be for a 2 by 2 matrix, it 
separates invertible from singular. Chapter 6 will be looking for singular. 

• REVIEW OF THE KEY IDEAS • 

1. Cramer's Rule solves Ax =bbyratioslikexl = IBll/IAI = Iba2···anl/IAI. 

2. When C is the cofactor matrix for A, the inverse is A-I = C T / det A. 

3. The volume of a box is I detAI, when the box edges are the rows of A. 

4. Area and volume are needed to change variables in double and triple integrals. 

5. In R3 , the cross product u x v is perpendicular to u and v. 

• WORKED EXAMPLES • 

5.3 A If A is singular, the equation ACT = (det A) I becomes ACT = zero matrix. 
Then each column of C T is in the nullspace of A. Those columns contain cofactors along 
rows of A. So the cofactors quickly find the nUllspace of a 3 by 3 matrix-my apologies 
that this comes so late! 

Solve Ax = 0 by x = cofactors along a row, for these singular matrices of rank 2: 

Cofactors 
give 

Nullspace 

Any nonzero column of CT will give the desired solution to Ax = O. With rank 2, 
A has at least one nonzero cofactor. If A has rank 1 we get x = 0 and the idea fails. 
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Solution The first matrix has these cofactors along its top row (note each minus sign): 

3 9 
2 8 =6 

2 9 
2 8 =2 

2 3 
2 2 =-2 

Then x = (6,2, -2) solves Ax = O. The cofactors along the second row are (-18, -6, 6) 
which is just -3x. This is also in the one-dimensional nullspace of A. 

The second matrix has zero co/actors along its first row. The nullvector x = (0, 0, 0) 
is not interesting. The cofactors of row 2 give x = (1, -1, 0) which solves Ax = O. 

Every n by n matrix of rank n - 1 has at least one nonzero cofactor by Problem 3.3 .12. 
But for rank n - 2, all cofactors are zero and we only find x = O. 

5.3 B Use Cramer's Rule with ratios det B j / det A to solve Ax = b. Also find the 
inverse matrix A-I = CT I det A. Why is the solution x for this b the same as column 3 of 
A-I? Which cofactors are involved in computing that column x? 

Ax = b is 

Find the volumes of the boxes whose edges are columns of A and then rows of A-I. 

Solution The determinants of the B j (with right side b placed in column j) are 

062 
IBII = 0 4 2 = 4 

190 

202 
IB21 = 1 0 2 =-2 

510 

260 
IB31 = 1 4 0 = 2. 

591 

Those are cofactors C3I , C32 , C33 of row 3. Their dot product with row 3 is det A: 

detA = a31 C31 + a32C32 + a33C33 = (5,9,0) . (4, -2, 2) = 2. 

The three ratios det B j I det A give the three components of x = (2, -1,1). This x is the 
third column of A-I because b = (0,0,1) is the third column of I. The cofactors along 
the other rows of A, divided by det A = 2, give the other columns of A-I: 

A-I = -- = - 10 -10 -2 . Multiply to check AA-I = I 
cT 1 [-18 18 4] 

detA 2 -11 12 2 

The box from the columns of A has volume = det A = 2 (the same as the box from the 
rows, since IATI = IAI). The box from A-I has volume l/lAI = !. 
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Problem Set 5.3 

Problems 1-5 are about Cramer's Rule for x = A -lb. 

1 Solve these linear equations by Cramer's Rule x j = det B j / det A: 

(a) 2XI + 5X2 = 1 
Xl + 4X2 = 2 

(b) 
2XI + X2 = 1 

Xl + 2X2 + X3 = 0 
X2 + 2X3 = o. 

2 Use Cramer's Rule to solve for y (only). Call the 3 by 3 determinant D: 

(a) ax + by = 1 
ex + dy = 0 

ax + by + cz = I 
(b) dx + ey + Jz = 0 

gx + hy + iz = O. 
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3 Cramer's Rule breaks down when detA = O. Example (a) has no solution while 
(b) has infinitely many. What are the ratios X j = det B j / det A in these two cases? 

(a) 2XI + 3X2 = I 
4XI + 6X2 = I (parallel1ines) (b) 

2XI + 3X2 = 1 . 
4 + 6 2 

(same hne) 
Xl X2 = 

4 Quick proof of Cramer's rule. The determinant is a linear function of column 1. It is 
zero if two columns are equal. When b = Ax = Xlal + X2a2 + X3a3 goes into the 
first column of A, the determinant ofthis matrix BI is 

ib a2 a3i = iXlal + X2a 2 + X3a 3 a2 a3i = xlial a2 a3i = Xl detA. 

(a) What formula for Xl comes from left side = right side? 

(b) What steps lead to the middle equation? 

5 If the right side b is the first column of A, solve the 3 by 3 system Ax = b. How 
does each determinant in Cramer's Rule lead to this solution x? 

Problems 6-15 are about A -I = C T / det A. Remember to transpose C. 

6 Find A-I from the cofactor formula C T / det A. Use symmetry in part (b). 

[
1 2 0]" 

(a) A = 0 3 0 
071 

(b) A = [-i -~ -~]. 
o -1 2 

7 If all the cofactors are zero, how do you know that A has no inverse? If none of the 
cofactors are zero, is A sure to be invertible? 

8 Find the cofactors of A and multiply ACT to find det A: 

[
1 1 4] 

A = I 2 2 
1 2 5 

and c=[~ -3 ] and ACT = --

If you change that 4 to 100, why is det A unchanged? 

Jason
高亮
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9 Suppose det A = 1 and you know all the cofactors in C. How can you find A? 

10 From the formula ACT = (det A)J show that det C = (det A)n-I. 

11 If all entries of A are integers, and det A = 1 or -1, prove that all entries of A -1 are 
integers. Give a 2 by 2 example with no zero entries. 

12 If all entries of A and A -I are integers, prove that det A = 1 or -1. Hint: What is 
det A times det A -1? 

13 Complete the calculation of A-I by cofactors that was started in Example 5. 

14 L is lower triangular and 8 is symmetric. Assume they are invertible: 

To invert 
triangular L 
symmetric 8 

(a) Which three cofactors of L are zero? Then L -1 is also lower triangular. 

(b) Which three pairs of cofactors of 8 are equal? Then 8-1 is also symmetric. 

(c) The cofactor matrix C of an orthogonal Q will be . Why? 

15 For n = 5 the matrix C contains cofactors. Each 4 by 4 cofactor contains 
__ terms and each term needs multiplications. Compare with 53 = 125 
for the Gauss-Jordan computation of A-I in Section 2.4. 

Problems 16-26 are about area and volume by determinants. 

16 (a) Find the area of the parallelogram with edges v = (3,2) and w = (1,4). 

(b) Find the area of the triangle with sides v, w, and v + w. Draw it. 

(c) Find the area of the triangle with sides v, w, and w - v. Draw it. 

17 A box has edges from (0,0,0) to (3, 1, 1) and (1, 3,1) and (1, 1,3). Find its volume. 
Also find the area of each parallelogram face using II u x v II. 

18 (a) The comers of a triangle are (2, 1) and (3,4) and (0,5). What is the area? 

(b) Add a comer at (-1, 0) to make a lopsided region (four sides). Find the area. 

19 The parallelogram with sides (2, 1) and (2,3) has the same area as the parallelogram 
with sides (2,2) and (1,3). Find those areas from 2 by 2 determinants and say why 
they must be equal. (I can't see why from a picture. Please write to me if you do.) 

20 The Hadamard matrix H has orthogonal rows. The box is a hypercube! 

1 1 

What is 
1 1 

IHI= 1 -1 
1 -1 

1 1 
-1 -1 
-1 1 

1 -1 

volume of a hypercube in R4? 

Jason
高亮

Jason
高亮

Jason
高亮

Jason
高亮
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21 If the columns of a 4 by 4 matrix have lengths L 1, L 2 , L 3 , L4 , what is the largest 
possible value for the determinant (based on volume)? If all entries of the matrix are 
1 or -1, what are those lengths and the maximum determinant? 

22 Show by a picture how a rectangle with area XlY2 minus a rectangle with area X2Yl 

produces the same area as our parallelogram. 

23 When the edge vectors a, b. c are perpendicular, the volume of the box is II a II times 
"b II times II c II. The matrix AT A is . Find det AT A and det A. 

24 The box with edges i and j and w = 2i + 3 j + 4k has height . What is the 
volume? What is the matrix with this determinant? What is i x j and what is its dot 
product with w? 

25 An n-dimensional cube has how many comers? How many edges? How many 
(n - I)-dimensional faces? The cube in Rn whose edges are the rows of 21 has 
volume . A hypercube computer has parallel processors at the comers with 
connections along the edges. 

26 The triangle with comers (0,0), (1,0), (0, 1) has area i. The pyramid inR3 with four 
comers (0,0,0), (1,0,0), (0,1,0), (0,0,1) has volume . What is the volume 
of a pyramid in R4 with five comers at (0,0,0,0) and the rows of I? 

Problems 27-30 are about areas dA and volumes dV in calculus. 

27 Polar coordinates satisfy x = r cos e and y = r sin e. Polar area is J d r de: 

J _ ax/or ax/ae _ cos e -r sin e 
- ay/ar ay/ae - sine rcose 

The two columns are orthogonal. Their lengths are __ . Thus j = __ 

28 Spherical coordinates p, ¢, e satisfy x = p sin ¢ cos e and y = p sin ¢ sin e and 
z = pcos¢. Find the 3 by 3 matrix of partial derivatives: ax/ap, ax/a¢, ox/ae in 
row 1. Simplify its determinant to j = p2 sin¢. Then dV in spherical coordinates 
is p2 sin ¢ dp d¢de, the volume of an infinitesimal "coordinate box". , 

29 The matrix that connects r, e to x, y is in Problem 27. Invert that 2 by 2 matrix: 

j-l _ ar/ax arjay 
- ae/ax oe/ay 

cose 
? 

? 
. -? ? -. 

It is surprising that ar/ax = ax/ar (Calculus, Gilbert Strang, p. SOl). Multiplying 
the matrices j and j-l gives the chain rule ax = ax ar + ax ae = 1. ax ar ax ae ax 

30 The triangle with comers (0,0), (6,0), and (1,4) has area . When you rotate 
it by e = 60° the area is . The determinant of the rotation matrix is 

cose -sine 
J = sin e cose 

1 ? 
'2 =? 
? ? 
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282 Chapter 5. Determinants 

Problems 31-38 are about the triple product (u x v) • w in three dimensions. 

31 A box has base area I! u x v II. Its perpendicular height is II w I! cos (). Base area times 
height = volume = I! u x v III! w II cos e which is (u xv) • w. Compute base area, 
height, and volume for u = (2,4,0), v = (-1,3,0), w = (1,2,2). 

32 The volume of the same box is given more directly by a 3 by 3 determinant. Evaluate 
that determinant. 

33 Expand the 3 by 3 determinant in equation (13) in cofactors of its row Ul, U2, U3. 

This expansion is the dot product of u with the vector __ 

34 Which of the triple products (u x w) • v and (w xu) • v and (v x w) • u are the same 
as (u xv) • w? Which orders of the rows u, v, w give the correct determinant? 

35 Let P = (1,0,-1) and Q = (1, 1, 1) and R = (2,2,1). ChooseS so that PQRS 
is a parallelogram and compute its area. Choose T, U, V so that OPQRSTUV is a 
tilted box and compute its volume. 

36 Suppose (x, y, z) and (1, 1,0) and (1,2,1) lie on a plane through the origin. What 
determinant is zero? What equation does this give for the plane? 

37 Suppose (x, y, z) is a linear combination of (2,3, 1) and (1,2,3). What determinant 
is zero? What equation does this give for the plane of all combinations? 

38 (a) Explain from volumes why det 2A = 2n det A for n by n matrices. 

(b) For what size matrix is the false statement det A + det A = det( A + A) true? 

Challenge Problems 

39 If you know all 16 cofactors of a 4 by 4 invertible matrix A, how would you find A? 

40 Suppose A is a 5 by 5 matrix. Its entries in row 1 multiply determinants (cofactors) 
in rows 2-5 to give the determinant. Can you guess a "Jacobi formula" for det A 
using 2 by 2 determInants from rows 1-2 times 3 by 3 determinants from rows 3-5? 

Test your formula on the -1, 2, -1 tridiagonal matrix that has determinant = 6. 

41 The 2 by 2 matrix AB =(2 by 3)(3 by 2) has a "Cauchy-Binet formula" for det AB: 

det AB = sum of (2 by 2 determinants in A) (2 by 2 determinants in B) 

(a) Guess which 2 by 2 determinants to use from A and B. 

(b) Test your formula when the rows of A are 1,2,3 and 1,4,7 with B = AT. 
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Chapter 6 

Eigenvalues and Eigenvectors 

6.1 Introduction to Eigenvalues 

Linear equations Ax = b come from steady state problems. Eigenvalues have their greatest 
importance in dynamic problems. The solution of d u / d t = Au is changing with time­
growing or decaying or oscillating. We can't find it by elimination. This chapter enters a 
new part of linear algebra, based on Ax = AX. All matrices in this chapter are square. 

A good model comes from the powers A, A 2 , A 3 , . .. of a matrix. Suppose you need the 
hundredth power A 100. The starting matrix A becomes unrecognizable after a few steps, 
and A 100 is very close to [.6 .6; .4 .4]: 

[.8 .3] 
.2 .7 [

.70 .45] 

.30 .55 

A 

[
.650 .525] 
.350 .475 'D=CJ;~;1 

'AI9.9 

A 100 was found by using the eigenvalues of A, not by mUltiplying 100 matrices. Those 
eigenvalues (here they are 1 and 1/2) are a new way to see into the heart of a matrix. 

To explain eigenvalues, we first explain eigenvectors. Almost all vectors change di­
rection, when they are multiplied by A. Certain exceptional vectors x are in the same 
direction as Ax. Those are the "eigenvectors". Multiply an eigenvector by A, and the 
vector Ax is a number A times the original x. 

The basic equation is Ax = AX. The number A is an eigenvalue of A. 

The eigenvalue A tells whether the special vector x is stretched or shrunk or reversed or left 
unchanged-when it is multiplied by A. We may find A = 2 or ~ or -lor 1. The eigen­
value A could be zero! Then Ax = Ox means that this eigenvector x is in the nUllspace. 

If A is the identity matrix, every vector has Ax = x. All vectors are eigenvectors of I. 
All eigenvalues "lambda" are A = 1. This is unusual to say the least. Most 2 by 2 matrices 
have two eigenvector directions and two eigenvalues. We will show that det(A - AI) = O. 
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